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Abstract— This paper studies the control-oriented re-
cursive identification of finite impulse response systems
with binary-valued observations. Inspired by the Maximum
Likelihood method, a novel recursive algorithm is proposed
using the statistical property of system noises and ob-
servations. Unlike existing research, the gradient of the
proposed algorithm is derived from the local likelihood
function, which has not been previously considered. The
core advantage of the algorithm is the adaptation of the
recursive weight term, and especially, it has an accelerating
effect when the estimated value deviates far from the true
value. Besides, compared with existing algorithm based
on time-varying thresholds, the proposed algorithm makes
it applicable to fixed threshold scenarios through weight-
ing, thus avoiding the complexity caused by time-varying
thresholds. The proposed algorithm is proved to be con-
vergent in both almost sure and mean square sense. Fur-
thermore, the almost sure and mean square convergence
rates are also obtained under some mild conditions. Two
simulations are presented to demonstrate the effectiveness
of the proposed algorithm and advantage of convergence
rate over existing algorithm.

Index Terms— Binary-valued observations, Likelihood
function, Stochastic approximation, System identification.

I. INTRODUCTION

With the continuous development of information technology
and digital communication, set-valued systems are increas-
ingly integrated into our daily lives, due to their widespread
applications [1]–[3]. Different from the traditional accurate
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output systems, the information provided by set-valued sys-
tems is the set to which the output belongs. The emergence
of set-valued systems is mainly owing to the inherent fea-
tures of systems themselves (such as determining disease and
health states in complex disease diagnosis [4]–[6], truth and
falsehood of radar targets [7], digital signal in computers [8],
[9]), as well as the cost constraints of sensors (such as switch
sensors for measuring automobile exhaust [10], [11], limited
communication resource [12]–[16], etc.). When the output
is limited into two sets, the system is named as a binary-
valued system. The arising of set-valued systems identification
problem, due to limited observational information, makes the
existing identification methods that rely on accurate output no
longer applicable. Consequently, it presents new challenges
and demands for identification theory.

There are many offline algorithm studies for identification
of quantized systems, which have demonstrated excellent
performance in identification tasks. For example, with pe-
riodic inputs, the maximum likelihood (ML) solution can
be obtained directly for the identification of finite impulse
response (FIR) system with binary-valued observations [1],
which is named as the empirical measure method. [17] con-
structed an optimal quasi-convex combination estimation for
the empirical measure algorithm, and achieved its asymp-
totic effectiveness. [18] used weighted least squares (LS) as
the optimization objective function approach and designed
an offline parameter estimation algorithm through iterative
optimization. [19] provided numerical solutions of the ML
method for this quantized identification problem by design-
ing iterative algorithm. However, offline algorithms based on
periodic inputs or iterative optimization are difficult to apply
to control-oriented problems, due to fully determined input of
the former and geometrically increasing complexity over time
of the latter [20]–[23]. Therefore, research on control-oriented
identification with binary-valued observations mainly focuses
on recursive algorithms.

Recursive identification algorithms have attracted extensive
research in adaptive control problems [24], due to their signif-
icant advantages of requiring less storage and low complexity.
For the identification of quantized FIR system, there is no
explicit solution of the LS and ML method with normal input
conditions. Based on the similar LS objective function of [18],
[25] constructed a recursive identification algorithm for noise-
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free FIR systems with the known norm of unknown parame-
ters under binary observations. Furthermore, [26] improved
the algorithm by using adaptive regulative coefficient, and
proves that the estimation algorithm can converge to the true
value. [27] proposed a recursive identification algorithm using
a known norm of parameters, which was modified by the
recursive weighted LS algorithm, and provided the bound of
the estimation error. However, it is difficult to achieve noise-
free conditions and a known norm of parameters in practical
systems.

Under bounded persistent excitations, a innovative gradient
utilizing the distribution function of noise was constructed
in [28], and a recursive projection algorithm was designed
to identify the FIR system with binary-valued observations.
The mean square and almost sure convergence rates of the
algorithm were proved to be O (ln k/k), where k denotes the
number of observations. This type of recursive algorithm has
attracted extensive research attention. [29] further proved that
the mean square convergence rate of the recursive projection
algorithm can reach O (1/k), and demonstrated that this rate
depends on the true parameters. [30] proposed a stochastic
gradient projection algorithm, and proved that by designing
appropriate weights, the algorithm can achieve asymptotic
effectiveness. But, this type of algorithms [28]–[30] has a
significant problem, which is that in order to achieve bounded
estimation required for algorithm analysis, a projection opera-
tor is added to the algorithm. It increases the complexity of the
algorithm, and also requires the unknown parameters belong to
a known compact set. To remove the projection operator, [31]
innovatively introduced an auxiliary stochastic process, and
proved that the algorithm can converge without the need for a
projection operator. However, it is important to note that the
mean square convergence rate can only be guaranteed when
the estimated value falls within a bounded region, or in other
words, when k is big enough. Conversely, when the estimate
deviates far from the true value, the convergence rate tends to
decrease.

Besides, some studies were conducted using time-varying
thresholds [32]–[35]. Compared to fixed thresholds, designable
thresholds can provide richer information, while introducing
considerable complexity to the quantizer. Given that thresh-
olds are designed using parameter estimates [32]–[34], the
quantizer requires continuous access to these estimates, either
by transmitting the estimates to the quantizer or by enabling
the quantizer itself to compute the estimates. However, this
requirement is difficult to implement in a real system. Con-
sequently, this paper focuses on refining the sign-error type
algorithm proposed by [33] and making it suitable for fixed
thresholds scenarios.

In this paper, it is noted that the recursive algorithm
constructed in many existing works [28]–[31], [36] utilizing
the gradient derived from local objective function of LS
method, whereas the gradient of local objective function of ML
method has not been considered. Based on the gradient derived
by local likelihood function, a novel recursive identification
algorithm is designed under fixed thresholds scenarios. The
main contributions are listed as follows.

i. This paper studies the recursive identification of FIR

systems with binary-valued observations. A recursive
identification algorithm based on local likelihood function
is proposed using the statistical property of the system
noises and observations with fixed threshold. The core
of the proposed algorithm is a weighting approach for
the binary-valued observations. Compared to the existing
sign-error type recursive algorithm that employs time-
varying thresholds [33], this approach avoids the com-
plexity of computation or transmission for quantizers, and
makes the sign-error type algorithm applicable to fixed
thresholds scenarios.

ii. The gradient of the proposed algorithm in this paper is
derived from the local likelihood function, which has
not been previously considered, compared to existing
research [28]–[31], [36] deriving gradient from local
objective function of LS method. The main advantage of
the algorithm is the adaptation of recursive weight, and
especially, it has an accelerating effect when the estimated
value deviates far from the true value. In addition, the
proposed algorithm does not require a priori information
on parameter location.

iii. Through analyzing the properties of the adaptive weight,
the proposed algorithm is proved to be convergent in both
almost sure and mean square sense under bounded persis-
tent excitations. Furthermore, despite being constrained by
limited information, the almost sure convergence rate of
the proposed algorithm is proved to achieve O(

√
ln k/k).

And the mean square convergence rate reaches O (1/k),
which is the best performance with quantized and even
accurate observations in the sense of the Cramér-Rao (CR)
lower bound.

The rest of this paper is organized as follows. Section
II formulates the identification problem considered in this
paper. Section III introduces the design idea of the proposed
algorithm. Section IV gives the properties of the identification
algorithm, including convergence and convergence rate. In
Section V, two simulations are given to demonstrate the theo-
retical results. At last, Section VI summarizes the conclusions
and future works of this paper.

II. PROBLEM FORMULATION

Consider the FIR system:

yk = ϕ⊤
k θ + dk, k ≥ 1, (1)

where ϕk = [uk, . . . , uk−n+1]
⊤ ∈ Rn is the input, θ ∈ Rn is

the unknown parameter, and dk is the system noise, respec-
tively. The output yk of the system (1) cannot be measured
directly, and only can be observed by a binary-valued sensor
with a known and fixed threshold C, which can be represented
by a sign function

sk = sgn(yk − C) =

{
1, yk ≥ C;

−1, yk < C.
(2)

Our goal is to estimate the unknown parameter θ utilizing
the input ϕk and the binary observation sk. We have the
following assumptions on the noise and input.
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Assumption 1: The noise sequence {dk, k ≥ 1} is indepen-
dent and identically distributed with d1 ∼ N(0, σ2), where σ
is known. The cumulative distribution and probability density
function of d1 are denoted as F (·) and f(·), respectively.

Assumption 2: The input ϕk is Fk−1-measurable with
Fk−1 being the σ-algebra generated by {d1, . . . , dk−1}, and
follows

sup
k≥1

∥ϕk∥ ≤ M < ∞,

where ∥·∥ is the Euclidean norm in this paper, and there exists
positive integer N ≥ n and positive constant δ, such that

1

N

N∑
j=1

ϕk+jϕ
⊤
k+j ≥ δIn, k ≥ 0, (3)

where In is the n× n identity matrix.
Remark 1: Assumption 2 is the same as the assumption

about input in [28]. The input is an adaptive sequence, which
is more applicable to control-oriented tasks, compared to the
deterministic input used by the existing algorithm without
projection in [31].

III. ALGORITHM

In this section, we will present the main idea of algorithm
design. Recursive algorithms require the design of innovation
(direction of algorithm) and step size to update the estimate
from the previous time step. Let θ̂k represents the estimation
of θ at time k.

A. Existing algorithm for the identification with
binary-valued observations

For the recursive identification of FIR system with binary-
valued observations, most of the existing works [28]–[31], [36]
design algorithm by using LS method.

Specifically, when receiving the k-th observation sk, accord-
ing to the local optimization objective of LS, that is, the part of
the objective function that only involves the k-th observation
sk,

min
θ∈Rn

gk(θ) := (sk − E[sk|θ])2 , (4)

where

E[sk|θ] = P (sk = 1)− P (sk = −1)

= P (ϕ⊤
k θ + dk ≥ C)− P (ϕ⊤

k θ + dk < C)

= F (−C + ϕ⊤
k θ)− F (C − ϕ⊤

k θ)

= 2F (ϕ⊤
k θ − C)− 1,

the negative gradient direction based on the θ̂k−1 is

− ∂gk(θ)

∂θ

∣∣∣∣∣
θ=θ̂k−1

=4
(
sk + 1− 2F (ϕ⊤

k θ̂k−1 − C)
)
f(ϕ⊤

k θ̂k−1 − C)ϕk.

Due to f(·) always being greater than 0 under Assumption
1, many researchers use the above gradient and employ

stochastic approximation method, to design recursive algo-
rithm in the following form,

θ̂k = θ̂k−1 +
βϕk

k

(
sk + 1− 2F (ϕ⊤

k θ̂k−1 − C)
)
, (5)

with any given initial value θ̂0 and appropriate step size β.
For the convenience of analysis, many existing works [28]–
[30] have added a projection operator to ensure that the
estimated values are uniformly bounded, which requires a
priori information of the parameter location. [31] proved that
without the projection operator, as shown in algorithm (5), the
convergence and convergence rate can also be obtained.

Remark 2: The stochastic approximation method [37] is
suitable for some situations with random interference, and it
requires the step size ak to satisfy

∞∑
k=1

ak = ∞,

∞∑
k=1

a2k < ∞.

A typical and simple step size is designed as ak =
β

k
, where

β is a positive step size that can be freely designed.

B. A recursive identification algorithm based on local
likelihood function

Based on the above discussion, it is natural to consider
the log-likelihood function of ML method. Since P (sk =
1) = F (ϕ⊤

k θ − C) and P (sk = −1) = F (C − ϕ⊤
k θ), the

local optimization objective of log-likelihood function that
only involves sk is

max
θ∈Rn

Lk(θ) := logF
(
sk(ϕ

⊤
k θ − C)

)
. (6)

Further, the gradient direction based on the θ̂k−1 is

∂Lk(θ)

∂θ

∣∣∣∣∣
θ=θ̂k−1

=
f
(
sk(ϕ

⊤
k θ̂k−1 − C)

)
F
(
sk(ϕ⊤

k θ̂k−1 − C)
)skϕk.

Define
p(x) =

f(x)

F (x)
, (7)

which is named as Inverse Mills’ Ratio [44]. A recursive
identification algorithm based on local likelihood function can
be designed as

θ̂k = θ̂k−1 +
βϕk

k
skp

(
sk(ϕ

⊤
k θ̂k−1 − C)

)
, (8)

with any given initial value θ̂0 and appropriate positive step
size β. β plays an important role in the convergence rate,
which will be shown in Theorems 2 and 3.

We have the following lemma and corollary about p(x).
Lemma 1: (Remark 4, [19]) Under Assumption 1 and defi-

nition (7), for x ∈ (−∞,∞), the function
dp(x)

dx
is a strictly

increasing function and
dp(x)

dx
∈ (− 1

σ2
, 0).

Corollary 1: Under the conditions of Lemma 1, we have

i. |p(x)− p(y)| ≤ |x− y|
σ2

, for any x, y ∈ (−∞,∞);
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ii. p(x) ≤ p(0)+
|x|
σ2

=

√
2√
πσ

+
|x|
σ2

, and p2(x) ≤ 4

πσ2
+
2x2

σ4
,

for any x ∈ (−∞,∞).
The proof of Corollary 1 is omitted.

C. Difference from the sign-error type algorithm with
time-varying thresholds

For the identification problem with binary-valued obser-
vations using time-varying thresholds, the sign-error type
algorithm proposed in [33] can be written as follows:

θ̂k = ΠΘ

(
θ̂k−1 +

βϕk

rk
sk

)
,

sk = sgn(yk − ϕ⊤
k θ̂k−1),

rk = 1 +

k∑
l=1

ϕ⊤
l ϕl,

(9)

where ϕ⊤
k θ̂k−1 is designed time-varying threshold, and ΠΘ(·)

is a projection mapping from Rn to a compact set Θ, to
ensure that θ̂k is uniformly bounded. rk represents the sum
of the squared Euclidean norms of {ϕl, l = 1, . . . , k}. Under
Assumption 2, we have that rk is of the same order as k,
because

rk = 1 +

k∑
l=1

tr
(
ϕlϕ

⊤
l

)
≥ 1 +

⌊
k

N

⌋
Nnδ ≥ 1 + (k −N)nδ,

and
rk ≤ 1 + kM2.

It can be seen that the differences between algorithm (8) and
(9) lie in that (8) has a weighted term p

(
sk(ϕ

⊤
k θ̂k−1 − C)

)
on the binary-valued observations, does not require priori pa-
rameter information (no projection operator) and uses a fixed
threshold C rather than time-varying thresholds designed by
ϕ⊤
k θ̂k−1. Designable thresholds Ck contains estimated values

θ̂k−1, which are difficult to implement in a real system, either
through transmitting the estimates to the quantizer or by the
quantizer itself being able to compute the parameter estimates.
To overcome this hurdle, a weighting approach for the binary-
valued observations is applied in algorithm (8), making the
sign-error type algorithm (9) applicable for fixed threshold
scenarios.

IV. PROPERTIES OF THE IDENTIFICATION ALGORITHM

In this section, the almost sure and mean square conver-
gence of the identification algorithm will be proved and the
convergence rates will also be obtained. First, define

q(x) =
f(x)

F (x) [1− F (x)]
, (10)

and an important lemma about q(x) is introduced to help us
analyze the convergence of the proposed algorithm.

Lemma 2: Under Assumption 1, we have the following
properties for q(x):

i. q(x) is an even function;

ii. q(x) >
2

σ

√
2

π
, when x > 0;

iii. q(x) <
2

σ

√
2

π
+

x

σ2
, when x > 0;

iv. q(x) >
x

σ2
, when x > 0.

The proof of Lemma 2 is given in Appendix I-A.
Remark 3: q(x) has a positive consistent lower bound glob-

ally, and

lim
x→+∞

q(x)σ2

x
= 1.

The function curve of q(x) with σ = 1 is shown in Fig. 1.
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Fig. 1. q(x) on positive real axis with σ = 1.

A. Convergence
This subsection will present the conclusions of convergence

properties of the proposed algorithm (8).
Let θ̃k = θ̂k−θ denote the estimation error at time k. Then,

from (1), (2), and the proposed algorithm (8), we have

θ̃k = θ̃k−1 +
βskp

(
sk(ϕ

⊤
k θ̂k−1 − C)

)
ϕk

k
, (11)

and the following lemma.
Lemma 3: Under Assumptions 1 and 2, we have

∥θ̃k − θ̃k−1∥ ≤ βM |ϕ⊤
k θ̃k−1|

kσ2
+O

(
1

k

)
,

and further

∥θ̃k − θ̃k−1∥2 ≤ 2β2M2|ϕ⊤
k θ̃k−1|2

k2σ4
+O

(
1

k2

)
.

The proof of Lemma 3 is given in Appendix I-B.
Lemma 4: Under Assumption 1, for any fixed b > 0, when

|x| ≤ b

2
, there exists B = F

(
3b

2

)
− F

(
b

2

)
, such that{

F (x)− F (x+ α) ≤ −B, if α > b;

F (x)− F (x+ α) ≥ B, if α < −b.
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The proof of Lemma 4 is given in Appendix I-C.
Theorem 1: Under Assumptions 1 and 2, the parameter

estimation error θ̃k of the proposed algorithm (8) for the
systems (1) and (2) converges to 0 in both mean square and
almost sure sense, i.e.,

lim
k→∞

Eθ̃⊤k θ̃k = 0,

and
lim
k→∞

θ̃k = 0, a.s.

Proof: It follows from (11) that

E
[
∥θ̃k∥2|Fk−1

]
=∥θ̃k−1∥2 + E

2βskp
(
sk(ϕ

⊤
k θ̂k−1 − C)

)
ϕ⊤
k θ̃k−1

k
|Fk−1


+ E

β2p2
(
sk(ϕ

⊤
k θ̂k−1 − C)

)
ϕ⊤
k ϕk

k2
|Fk−1

 .

(12)
Let us analyze the second term on the right-hand-side of

(12). Under Assumption 2, given a constant b that satisfies
b ≥ 2(M∥θ∥+ |C|) ≥ 2|ϕ⊤

k θ + C|, then we get

E
[
skp

(
sk(ϕ

⊤
k θ̂k−1 − C)

)
ϕ⊤
k θ̃k−1|Fk−1

]
=ϕ⊤

k θ̃k−1F
(
ϕ⊤
k θ − C

) f
(
ϕ⊤
k θ̂k−1 − C

)
F
(
ϕ⊤
k θ̂k−1 − C

)
− ϕ⊤

k θ̃k−1

(
1− F

(
ϕ⊤
k θ − C

)) f
(
ϕ⊤
k θ̂k−1 − C

)
1− F

(
ϕ⊤
k θ̂k−1 − C

)
=ϕ⊤

k θ̃k−1q
(
ϕ⊤
k θ̂k−1−C

)(
F
(
ϕ⊤
k θ−C

)
−F

(
ϕ⊤
k θ̂k−1−C

))
=ϕ⊤

k θ̃k−1q
(
ϕ⊤
k θ̂k−1 − C

)
·{(

F
(
ϕ⊤
k θ − C

)
− F

(
ϕ⊤
k θ̂k−1 − C

))
I{|ϕ⊤

k θ̃k−1|>b}

+
(
F
(
ϕ⊤
k θ − C

)
− F

(
ϕ⊤
k θ̂k−1 − C

))
I{|ϕ⊤

k θ̃k−1|≤b}

}
,

(13)
where q(·) is defined in (10).

When |ϕ⊤
k θ̃k−1| > b, due to |ϕ⊤

k θ−C| ≤ b

2
, by Lemma 4,

there exists B > 0, such that if ϕ⊤
k θ̃k−1 > b,(

F
(
ϕ⊤
k θ−C

)
−F

(
ϕ⊤
k θ−C+ϕ⊤

k θ̃k−1

))
≤ −B,

and if ϕ⊤
k θ̃k−1 < −b,(
F
(
ϕ⊤
k θ−C

)
−F

(
ϕ⊤
k θ−C+ϕ⊤

k θ̃k−1

))
≥ B.

It means that

ϕ⊤
k θ̃k−1

(
F
(
ϕ⊤
kθ−C

)
− F

(
ϕ⊤
kθ−C+ϕ⊤

k θ̃k−1

))
I{|ϕ⊤

k θ̃k−1|>b}

≤ −B|ϕ⊤
k θ̃k−1|I{|ϕ⊤

k θ̃k−1|>b}.
(14)

Besides, when |ϕ⊤
k θ̃k−1| > b, since

|ϕ⊤
k θ − C| ≤ b

2
<

|ϕ⊤
k θ̃k−1|
2

,

and by Lemma 2, we have

q
(
ϕ⊤
k θ − C + ϕ⊤

k θ̃k−1

)
I{|ϕ⊤

k θ̃k−1|>b}

≥|ϕ⊤
k θ − C + ϕ⊤

k θ̃k−1|
σ2

I{|ϕ⊤
k θ̃k−1|>b}

≥|ϕ⊤
k θ̃k−1| − |ϕ⊤

k θ − C|
σ2

I{|ϕ⊤
k θ̃k−1|>b}

≥|ϕ⊤
k θ̃k−1|
2σ2

I{|ϕ⊤
k θ̃k−1|>b}.

Hence,

ϕ⊤
k θ̃k−1q

(
ϕ⊤
k θ̂k−1 − C

)
·(

F
(
ϕ⊤
k θ − C

)
− F

(
ϕ⊤
k θ̂k−1 − C

))
I{|ϕ⊤

k θ̃k−1|>b}

≤−B
|ϕ⊤

k θ̃k−1|2

2σ2
I{|ϕ⊤

k θ̃k−1|>b}.

(15)

In addition, when |ϕ⊤
k θ̃k−1| ≤ b, using the differential

mean value theorem (Theorem 5.3.1, [40]), Assumption 1 and
Lemma 2, there exists ξk between ϕ⊤

k θ − C and ϕ⊤
k θ − C +

ϕ⊤
k θ̃k−1, such that

ϕ⊤
k θ̃k−1q

(
ϕ⊤
k θ̂k−1 − C

)
·(

F
(
ϕ⊤
k θ − C

)
− F

(
ϕ⊤
k θ̂k−1 − C

))
I{|ϕ⊤

k θ̃k−1|≤b}

=−
(
ϕ⊤
k θ̃k−1

)2
f(ξk)q

(
ϕ⊤
k θ̂k−1 − C

)
I{|ϕ⊤

k θ̃k−1|≤b}

≤−
(
ϕ⊤
k θ̃k−1

)2 2

σ

√
2

π
f(|ϕ⊤

k θ−C|+|ϕ⊤
k θ̃k−1|)I{|ϕ⊤

k θ̃k−1|≤b}

≤−
(
ϕ⊤
k θ̃k−1

)2 2

σ

√
2

π
f

(
3

2
b

)
I{|ϕ⊤

k θ̃k−1|≤b}.

(16)

Let

γ = min

{
B

2σ2
,
2

σ

√
2

π
f

(
3

2
b

)}
. (17)

Then, combining (15), (16) and (17), (13) becomes

E
[
skp

(
sk(ϕ

⊤
k θ̂k−1 − C)

)
ϕ⊤
k θ̃k−1|Fk−1

]
=ϕ⊤

k θ̃k−1q
(
ϕ⊤
k θ̂k−1 − C

)
·{(

F
(
ϕ⊤
k θ − C

)
− F

(
ϕ⊤
k θ̂k−1 − C

))
I{|ϕ⊤

k θ̃k−1|>b}

+
(
F
(
ϕ⊤
k θ − C

)
− F

(
ϕ⊤
k θ̂k−1 − C

))
I{|ϕ⊤

k θ̃k−1|≤b}

}
≤− γ

(
ϕ⊤
k θ̃k−1

)2
.

(18)

Let’s move to the third term on the right-hand-side of (12).
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Using Corollary 1, we can obtain

E

β2p2
(
sk(ϕ

⊤
k θ̂k−1 − C)

)
ϕ⊤
k ϕk

k2
|Fk−1


≤β2M2

k2
E

( √
2√
πσ

+
|ϕ⊤

k θ̂k−1 − C|
σ2

)2

|Fk−1


≤β2M2

k2

( √
2√
πσ

+
|ϕ⊤

k θ̃k−1|+ |ϕ⊤
k θ − C|

σ2

)2

≤β2M2

k2

2
(
ϕ⊤
k θ̃k−1

)2
σ4

+ 2

( √
2√
πσ

+
|ϕ⊤

k θ − C|
σ2

)2


=
2β2M2

(
ϕ⊤
k θ̃k−1

)2
k2σ4

+O

(
1

k2

)
.

(19)
Combining (12) with (18) and (19), we get

E
[
∥θ̃k∥2|Fk−1

]
≤∥θ̃k−1∥2 +

(
−2βγ

k
+

2β2M2

k2σ4

)(
ϕ⊤
k θ̃k−1

)2
+O

(
1

k2

)
,

(20)
and

E∥θ̃k∥2 ≤ E∥θ̃k−1∥2

+

(
−2βγ

k
+

2β2M2

k2σ4

)
E
(
ϕ⊤
k θ̃k−1

)2
+O

(
1

k2

)
.

(21)

Let Vk =
∑N

j=1 E∥θ̃k+j∥2, where N is from Assumption
2. Then, we have

Vk ≤Vk−1 −
2βγ

∑N
j=1 E

(
ϕ⊤
k+j θ̃k+j−1

)2
k

+ Vk−1O

(
1

k2

)
+O

(
1

k2

)
.

(22)

For any 1 ≤ i ̸= j ≤ N , without loss of generality, let
j > i. Using Lemma 3, we can get

∥θ̃k+j−1 − θ̃k+i−1∥2

=

∥∥∥∥∥
j−1∑
l=i

(
θ̃k+l − θ̃k+l−1

)∥∥∥∥∥
2

≤(j − i)

j−1∑
l=i

∥θ̃k+l − θ̃k+l−1∥2

≤
j−1∑
l=i

∥θ̃k+l−1∥2O
(

1

k2

)
+O

(
1

k2

)
,

(23)

and ∣∣∣∣(ϕ⊤
k+j θ̃k+j−1

)2
−
(
ϕ⊤
k+j θ̃k+i−1

)2∣∣∣∣
=

∣∣∣∣(θ̃k+j−1 − θ̃k+i−1 + θ̃k+i−1

)⊤
ϕk+j ·

ϕ⊤
k+j

(
θ̃k+j−1 − θ̃k+i−1 + θ̃k+i−1

)
−
(
ϕ⊤
k+j θ̃k+i−1

)2∣∣∣∣
=

∣∣∣∣∣
((

θ̃k+j−1 − θ̃k+i−1

)⊤
ϕk+j

)2

+2
(
θ̃k+j−1 − θ̃k+i−1

)⊤
ϕk+jϕ

⊤
k+j θ̃k+i−1

∣∣∣∣
≤M2∥θ̃k+j−1 − θ̃k+i−1∥2 +M2k∥θ̃k+j−1 − θ̃k+i−1∥2

+
M2

k
∥θ̃k+i−1∥2

≤
j−1∑
l=i

∥θ̃k+l−1∥2O
(
1

k

)
+O

(
1

k

)
.

(24)
Then, we can get

N

N∑
j=1

(
ϕ⊤
k+j θ̃k+j−1

)2
≥

N∑
j=1

N∑
i=1

(
ϕ⊤
k+j θ̃k+i−1

)2
−

N−1∑
i=1

∥θ̃k+i−1∥2O
(
1

k

)
−O

(
1

k

)

=

N∑
i=1

θ̃⊤k+i−1

N∑
j=1

(
ϕk+jϕ

⊤
k+j

)
θ̃k+i−1

−
N−1∑
i=1

∥θ̃k+i−1∥2O
(
1

k

)
−O

(
1

k

)
,

(25)
and by Assumption 2,

N∑
i=1

θ̃⊤k+i−1

N∑
j=1

(
ϕk+jϕ

⊤
k+j

)
θ̃k+i−1 ≥ Nδ

N∑
i=1

∥θ̃k+i−1∥2.

(26)
Inequality (22) together with (25) and (26) indicates

Vk ≤Vk−1 −
2βγ

∑N
j=1 E

(
ϕ⊤
k+j θ̃k+j−1

)2
k

+

Vk−1O

(
1

k2

)
+O

(
1

k2

)
≤Vk−1 −

2βγδVk−1

k
+ Vk−1O

(
1

k2

)
+O

(
1

k2

)
=

(
1− 2βγδ

k
+O

(
1

k2

))
Vk−1 +O

(
1

k2

)
,

(27)

which implies that Vk is monotonically decreasing, when k is
big enough. And further we can get

Vk ≤ V0 +

k∑
l=1

(
−2βγδ

l
+O

(
1

l2

))
Vl−1 +

k∑
l=1

O

(
1

l2

)
.

(28)
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Due to Vk ≥ 0, we have
k∑

l=1

(
2βγδ

l
+O

(
1

l2

))
Vl−1 < ∞,

which together with the monotonicity of Vk when k is big
enough, leads to

lim
k→∞

Vk = 0,

and
lim
k→∞

E∥θ̃k∥2 = 0.

It follows from (20) that

E
[
∥θ̃k∥2|Fk−1

]
≤∥θ̃k−1∥2+

2β2M2
(
ϕ⊤
k θ̃k−1

)2
k2σ4

+O

(
1

k2

)
,

(29)
and

E
k∑

l=1

{
2β2M2(ϕ⊤

l θ̃l−1)
2

l2σ4
+O

(
1

l2

)}

≤
k∑

l=1

{
2β2M4

l2σ4
E∥θ̃l−1∥2 +O

(
1

l2

)}
<∞.

(30)

In view of Lemma 1.2.2 in [37], we have that ∥θ̃k∥ converges
to a bounded limit, a.s.

Notice that limk→+∞ E∥θ̃k∥2 = 0. Consequently, θ̃k con-
verges to 0, a.s. The proof is completed.

B. Comparison of Transient Convergence
In this subsection, the transient performance of existing

algorithm (5) and the proposed algorithm (8) will be discussed.
First of all, the recursive LS algorithm (Section 11.2, [38])

based on accurate observations is presented below,
θ̂k = θ̂k−1 + Pkϕk

(
yk − ϕ⊤

k θ̂k−1

)
,

Pk =

(
k∑

l=1

ϕkϕ
⊤
k

)−1

,
(31)

where Pk is of the same order as
1

k
under Assumption 2.

Compared to the existing algorithm (5) and the proposed
algorithm (8) for the identification with binary-valued obser-
vations, the main difference lies in: yk − ϕ⊤

k θ̂k−1 of (31),
sk+1−2F (ϕ⊤

k θ̂k−1−C) of (5) and skp
(
sk(ϕ

⊤
k θ̂k−1 − C)

)
of (8). They have similar estimation update abilities, but due
to distinct types of observations, their transient convergence
characteristics vary. Specifically, the innovation (i.e., the dif-
ference between the output and its estimate) of the recursive
LS algorithm (31) satisfies

E
[
yk − ϕkθ̂k−1|Fk−1

]
= −ϕ⊤

k θ̃k−1, (32)

which is a linear function of θ̃k−1, and the innovation of the
existing algorithm (5) satisfies∣∣∣sk + 1− 2F (ϕ⊤

k θ̂k−1 − C)
∣∣∣ ≤ 2. (33)

We can see that the innovation (32) with the same order as
ϕ⊤
k θ̃k−1, has stronger estimation updating ability, compared

to the innovation (33) with a consistent upper bound. It
means that the identification algorithm (5) has a drawback
that it suffers from slow transient convergence rate when the
estimation is poor.

Furthermore, according to (18), it is noted that the condi-
tional expectation E

[
skp

(
sk(ϕ

⊤
k θ̂k−1 − C)

)
|Fk−1

]
of the

corresponding term in algorithm (8) maintains the same order
as −ϕ⊤

k θ̃k−1, which is similar to the innovation (32) of the
recursive LS algorithm.

Therefore, the proposed algorithm (8) overcomes the draw-
back of existing algorithm (5), and has an accelerating effect
when the estimated value deviates far from the true value. This
will be verified in Section V-B. It should also be pointed out
that since |sk| = 1, the acceleration ability is attributed to the
weighted term p

(
sk(ϕ

⊤
k θ̂k−1 − C)

)
completely.

C. Mean square convergence rate

This subsection will obtain the mean square convergence
rate of the proposed algorithm (8).

Theorem 2: Under Assumptions 1 and 2, the parameter es-
timation error θ̃k of the proposed algorithm (8) for the systems
(1) and (2) have the following mean square convergence rate,

E∥θ̃k∥2 =



O

(
1

k

)
, 2βγδ > 1;

O

(
ln k

k

)
, 2βγδ = 1;

O

(
1

k2βγδ

)
, 2βγδ < 1,

(34)

where β is the step size of proposed algorithm (8), γ is defined
by (17), and δ is given in Assumption 2.

Proof: By (27), one can get

Vk ≤
(
1− 2βγδ

k
+O

(
1

k2

))
Vk−1 +O

(
1

k2

)
≤V0

k∏
l=1

(
1− 2βγδ

l
+O

(
1

l2

))

+

k∑
l=1

k∏
j=l+1

(
1− 2βγδ

j
+O

(
1

j2

))
O

(
1

l2

)
=V0e

∑k
l=1 ln(1− 2βγδ

l +O( 1
l2
))

+

k∑
l=1

O

(
1

l2

)
e
∑k

j=l+1 ln
(
1− 2βγδ

j +O
(

1
j2

))

=O
(
k−2βγδ

)
+O

(
k−2βγδ

k∑
l=1

l2βγδ−2

)

=



O

(
1

k

)
, 2βγδ > 1;

O

(
ln k

k

)
, 2βγδ = 1;

O

(
1

k2βγδ

)
, 2βγδ < 1.

(35)
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Therefore, E∥θ̃k∥2 ≤ Vk =



O

(
1

k

)
, 2βγδ > 1;

O

(
ln k

k

)
, 2βγδ = 1;

O

(
1

k2βγδ

)
, 2βγδ < 1.

The proof is completed.
Remark 4: It is worth noting that, γ defined in (17) is

related to the unknown parameter θ, so the convergence rate
is affected by θ. In addition, to guarantee a fast algorithm
convergence rate, on the one hand, we can set a big enough
setp size β according to the range of the θ. On the other
hand, when there is no priori knowledge of θ, the step size
can be adjusted using the square of the estimated value, such
that β satisfies the condition of Theorem 2 and the following
Theorem 3.

Remark 5: The mean square convergence rate O (1/k)
when 2βγδ > 1 in Theorem 2 is the best rate under quantized
and even accurate observations in the sense of CR lower
bound. This is because the CR lower bound of estimating θ
utilizing binary-valued observations s1, . . . , sk [30] is

σ2
CR(s1, . . . , sk) =

(
k∑

l=1

f2(ϕ⊤
l θ − C)

F (ϕ⊤
l θ−C)F (C−ϕ⊤

l θ)
ϕlϕ

⊤
l

)−1

= O

(
1

k

)
,

and the CR lower bound of estimating θ utilizing accurate
observations y1, . . . , yk is

σ2
CR(y1, . . . , yk) =

(
k∑

l=1

ϕlϕ
⊤
l

σ2

)−1

= O

(
1

k

)
.

D. Almost sure convergence rate
In this subsection, we will get the almost sure convergence

rate of the proposed algorithm (8).
Theorem 3: Under Assumptions 1 and 2, the parameter es-

timation error θ̃k of the proposed algorithm (8) for the systems
(1) and (2) have the following almost sure convergence rate

∥θ̃k∥ = O
(√

ln k/k
)
, a.s.,

when β >
1

2γδ
, where β is the step size of proposed algorithm

(8), γ is defined by (17), and δ is given in Assumption 2.
Proof: By the conclusion of Theorem 1, ∥θ̃k∥ converges

to 0 almost surely. Then for any ϵ > 0, there exists kϵ > 0,
such that ∥θ̃k∥ ≤ ϵ when k > kϵ.

By (11) and Corollary 1, when k > kϵ, we get

∥θ̃k∥2

=∥θ̃k−1∥2 +
2βskp

(
sk(ϕ

⊤
k θ̂k−1 − C)

)
ϕ⊤
k θ̃k−1

k

+
β2p2

(
sk(ϕ

⊤
k θ̂k−1 − C)

)
ϕ⊤
k ϕk

k2

≤∥θ̃k−1∥2+
2βskp

(
sk(ϕ

⊤
k θ̂k−1 − C)

)
ϕ⊤
k θ̃k−1

k
+O

(
1

k2

)
.

(36)

Then, by (18), we have

k∥θ̃k∥2 − (k − 1)∥θ̃k−1∥2

≤∥θ̃k−1∥2 + 2βskp
(
sk(ϕ

⊤
k θ̂k−1 − C)

)
ϕ⊤
k θ̃k−1 +O

(
1

k

)
=∥θ̃k−1∥2 + 2βϕ⊤

k θ̃k−1q
(
ϕ⊤
k θ̂k−1 − C

)
·(

F
(
ϕ⊤
k θ − C

)
− F

(
ϕ⊤
k θ̂k−1 − C

))
+ 2βskp

(
sk(ϕ

⊤
k θ̂k−1 − C)

)
ϕ⊤
k θ̃k−1

− 2βϕ⊤
k θ̃k−1q

(
ϕ⊤
k θ̂k−1 − C

)
·(

F
(
ϕ⊤
k θ − C

)
− F

(
ϕ⊤
k θ̂k−1 − C

))
+O

(
1

k

)
≤∥θ̃k−1∥2 − 2βγ

(
ϕ⊤
k θ̃k−1

)2
+O

(
1

k

)
+ 2βϕ⊤

k θ̃k−1

{
skp

(
sk(ϕ

⊤
k θ̂k−1 − C)

)
−

q
(
ϕ⊤
k θ̂k−1 − C

)(
F
(
ϕ⊤
k θ − C

)
− F

(
ϕ⊤
k θ̂k−1 − C

))}
.

(37)
Let ka = k −N⌊k−kϵ

N ⌋. Then, ka > kϵ. When k > ka, by
virtue of ∥θ̃k∥ ≤ ϵ, and using (25) and (26), we obtain

−
k∑

l=ka+1

(
ϕ⊤
l θ̃l−1

)2

≤− δ

k∑
l=ka+1

∥θ̃l−1∥2 +

k−ka
N∑

i=1

O

(
1

ka + (i− 1)N

)

=− δ

k∑
l=ka+1

∥θ̃l−1∥2 +O (ln k) .

(38)

In addition, by (13) we have

E
[
skp

(
sk(ϕ

⊤
k θ̂k−1 − C)

)
− q

(
ϕ⊤
k θ̂k−1 − C

)
×(

F
(
ϕ⊤
k θ − C

)
− F

(
ϕ⊤
k θ̂k−1 − C

))
|Fk−1

]
= 0,

and when k > ka,∣∣∣skp(sk(ϕ⊤
k θ̂k−1 − C)

)
− q

(
ϕ⊤
k θ̂k−1 − C

)
×(

F
(
ϕ⊤
k θ − C

)
− F

(
ϕ⊤
k θ̂k−1 − C

))∣∣∣ < ∞.

Then by Theorem 1.3.10 in [39], for any λ >
1

2
,

k∑
l=ka+1

ϕ⊤
l θ̃l−1

{
slp
(
sl(ϕ

⊤
l θ̂l−1 − C)

)
−

q
(
ϕ⊤
l θ̂l−1 − C

)(
F
(
ϕ⊤
l θ − C

)
− F

(
ϕ⊤
l θ̂l−1 − C

))}
=O


√√√√ k∑

l=ka+1

(
ϕ⊤
l θ̃l−1

)2log

√√√√ k∑
l=ka+1

(
ϕ⊤
l θ̃l−1

)2λ


=O (1) + o

(
k∑

l=ka+1

∥θ̃l−1∥2
)
.

(39)
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Finally, combining (37) with (38) and (39), we can get

k∥θ̃k∥2 − ka∥θ̃ka∥2

≤
k∑

l=ka+1

∥θ̃l−1∥2 − 2βγδ

k∑
l=ka+1

∥θ̃l−1∥2

+ o

(
k∑

l=ka+1

∥θ̃l−1∥2
)

+O (ln k)

= (1 + o(1)− 2βγδ)

k∑
l=ka+1

∥θ̃l−1∥2 +O (ln k) .

(40)

Thus, we have ∥θ̃k∥2 = O

(
ln k

k

)
when β >

1

2γδ
. The proof

is completed.

V. SIMULATIONS

In this section, two numerical simulations are given to
demonstrate the theoretical results.

A. Verification of algorithm convergence
Consider the following FIR system with binary-valued ob-

servations 
yk = ϕ⊤

k θ + dk, k ≥ 1,

sk =

{
1, yk ≥ C;

−1, yk < C,

where θ = [0.2,−0.5, 0.7]⊤ is the unknown parameter, the
threshold C = 0, and dk ∼ N(0, 1) is i.i.d. noise. The input
ϕk = [uk, uk−1, uk−2]

⊤ and

uk =

{
− 0.4 + ek, k mod 4 = 0;

0.4 + ek, else,
(41)

where ek = 0.01 sin(k).
It can be verified that the input satisfies Assumption 2. By

setting N = 4, we have δ = 0.153, M = 0.705, ∥θ∥ =
√
0.78,

b = 1.246, B = 0.235 and γ = 0.111. Choose the step size
β = 30 to satisfy β > 1/2γδ, k0 = 30 and the initial value
θ̂k0

= [0, 0, 0]⊤ for subsequent simulations.
Remark 6: A larger β will result in larger step sizes in the

very first few steps of the algorithm (8), which may cause
the estimated value θ̂k to deviate from the true value θ after
the first few iterations. It will require more time to reduce
estimation error. To avoid excessive initial errors caused by
large β, we start the algorithm at k0 = β, which also applies
to other selected β in Fig. 3.

Fig. 2 shows that the estimates θ̂k given by the proposed
algorithm (8) converges to the true parameter [0.2,−0.5, 0.7]⊤,
which is consistent with Theorem 1.

Fig. 3 depicts the average trajectories of k∥θ̃k∥2 from 200
repeated experiments to estimate the empirical variance of θ̃k
with θ̂k0

= [0, 0, 0]⊤ and different step sizes β. It demonstrates
that the proposed recursive algorithm achieves the mean square
convergence rate of O (1/k) when β = 30, as stated in
Theorem 2. Besides, it can also be seen from Theorem 2
that the step size condition is a sufficient but unnecessary
condition. When 2βγδ > 1, the mean square convergence rate

k
0 1000 2000 3000 4000 5000 6000

3̂
k

-1

-0.5

0

0.5

1

1.5

2

2.5
true value of 3(1)
true value of 3(2)
true value of 3(3)
estimates of 3(1)
estimates of 3(2)
estimates of 3(3)

Fig. 2. Convergence of the proposed algorithm.

can definitely achieve O (1/k). However, when β is small,
such as when β = 2 or 4 in Fig. 3, it cannot guarantee a
convergence rate of O (1/k). Fig. 3 validates the conclusions
of Theorem 2.

k
0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

350

400

450

500

- = 2
- = 4
- = 10
- = 30

Fig. 3. Average trajectories of k∥θ̃k∥2 from 200 experiments with
θ̂k0 = [0, 0, 0]⊤ and different β.

In Fig. 4, a bounded trajectory of k∥θ̃k∥2/ ln k is presented
to illustrate that the almost sure convergence rate of the
proposed algorithm (8) is O

(√
ln k/k

)
, as established in

Theorem 3.

B. Comparison with Existing Algorithm

This simulation aims to compare the performance of the
existing algorithm (5) and the proposed algorithm (8), to verify
the claim of Section IV-B.

We maintain the same parameters as those in Subsec-
tion V-A, with θ = [0.2,−0.5, 0.7]⊤, C = 0, ϕk =
[uk, uk−1, uk−2]

⊤, uk is defined as (41), and i.i.d. noise
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k

0 1000 2000 3000 4000 5000 6000

k
‖θ̃

k
‖
2
/
ln

k
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10

15

20

25

30

Fig. 4. Trajectory of k∥θ̃k∥2/ ln k with θ̂k0 = [0, 0, 0]⊤.

dk ∼ N(0, 1). Let the step size β = 30 and start from k0 = 30
in both algorithms.

Starting with a initial estimate θ̂k0 = [−10,−10,−10]⊤,
Fig. 5 shows the average trajectories of ∥θ̃k∥2 from 200
repeated experiments for algorithms (5) and (8) under identical
scenario. While both algorithms are convergent, the proposed
algorithm (8) achieves markedly accelerated convergence dur-
ing initial stage when parameter estimates contain large errors,
compared to algorithm (5). More clearly, it can be seen from
Fig. 6, which plots the average trajectories of k∥θ̃k∥2 from 200
repeated experiments. The boundedness of both trajectories
confirms that their mean square convergence rate can reach
O (1/k). Crucially, the proposed algorithm (8) exhibits better
transient estimation performance and has an accelerating effect
when estimates deviate far from the true value, thus validating
the claim in Section IV-B.
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Fig. 5. Average trajectories of ∥θ̃k∥2 from 200 experiments with θ̂k0 =
[−10,−10,−10]⊤.
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Fig. 6. Average trajectories of k∥θ̃k∥2 from 200 experiments with
θ̂k0 = [−10,−10,−10]⊤.

VI. CONCLUDING REMARKS

This paper studies the recursive identification of FIR sys-
tems with binary-valued observations under fixed threshold.
A novel recursive algorithm is proposed using the statistical
property of system noises and observations. The gradient of
the proposed algorithm is derived from the local likelihood
function, which has not been previously considered. Compared
to the existing sign-error type algorithm proposed in [33]
based on time-varying thresholds, a weighting approach on the
binary-valued observations in the proposed algorithm makes
the sign-error type algorithm applicable to fixed threshold sce-
narios, thus avoiding the complexity caused by time-varying
thresholds for quantizers.

The proposed algorithm is proved to be convergent in both
almost sure and mean square sense under bounded persistent
excitations. Furthermore, the almost sure and mean square
convergence rates are also established, achieving O(

√
ln k/k)

and O (1/k), respectively. Compared to the existing recursive
algorithm in [31] for the identification with binary-valued
observations under fixed threshold, the main advantage of
the proposed algorithm in this paper is that the adaptive
recursive weight has an accelerating effect when the estimated
value deviates far from the true value. Two simulations are
conducted to demonstrate the effectiveness of the algorithm
and advantage of convergence rate over existing algorithm.

There are three topics for future research. Firstly, relaxing
the input assumptions is a critical consideration. Simplifying
these requirements could make the algorithm more accessible
for control-oriented problems. Secondly, the design of step size
ak in Remark 2 is worth further exploring. Two noteworthy
papers [41], [42] provide valuable insights on designing the
step size for stochastic approximation method. Thirdly, it is
also possible to consider extending to other more complex
models, such as quantized identification for ARMA models
[43].
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APPENDIX I
THE PROOFS FOR LEMMAS

A. Proof of Lemma 2

Proof:
i. The first is clearly true because

f(x) =
1√
2πσ

exp

(
− x2

2σ2

)
,

and
F (x) =

∫ x

−∞
f(t)dt.

ii. When x > 0, we have

F (x) =
1

2
+

∫ x

0

1√
2πσ

exp

(
− t2

2σ2

)
dt,

then

F (x)[1− F (x)]

=

(
1

2
+

∫ x

0

1√
2πσ

exp

(
− t2

2σ2

)
dt

)
×(

1

2
−
∫ x

0

1√
2πσ

exp

(
− t2

2σ2

)
dt

)
=
1

4
− 1

2πσ2

∫ x

0

∫ x

0

exp

(
− t21 + t22

2σ2

)
dt1dt2.

Let t1 = r cosα, t2 = r sinα. Then, we get

F (x)[1− F (x)]

≤1

4
− 1

2πσ2

∫ x

0

∫ π
2

0

exp

(
− r2

2σ2

)
rdαdr

=
1

4
− 1

4σ2

∫ x

0

exp

(
− r2

2σ2

)
rdr

=
1

4
exp

(
− x2

2σ2

)
,

and then
f(x)

F (x) [1− F (x)]
≥ 4√

2πσ
.

iii. By Corollary 1, p(x) ≤
√
2√
πσ

+
|x|
σ2

. When x > 0,

f(x)

F (x) [1− F (x)]
=

p(−x)

F (x)
≤ 1

F (x)

(
1

σ

√
2

π
+

x

σ2

)
.

Therefore, if

1

F (x)

(
1

σ

√
2

π
+

x

σ2

)
<

2

σ

√
2

π
+

x

σ2
(42)

holds, then q(x) <
2

σ

√
2

π
+

x

σ2
holds.

Let

h1(x) = (F (x)− 1)
x

σ2
+ (2F (x)− 1)

1

σ

√
2

π
,

then its derivative function is

h′
1(x) = f(x)

x

σ2
+

F (x)− 1

σ2
+

2f(x)

σ

√
2

π
,

where h′
1(0) =

2

πσ2
− 1

2σ2
> 0. To obtain the properties

of h′
1(x), take its derivative, yielding

h′′
1(x) = − x2

σ4
f(x) +

2f(x)

σ2
− 2x

σ3
f(x)

√
2

π

= f(x)

(
−x2

σ4
− 2x

σ3

√
2

π
+

2

σ2

)
.

By analysing h′′
1(x), we can get that the function h′

1(x)

increases on the interval

[
0, σ

(√
2

π
+ 2−

√
2

π

)]
, and

decreases on the interval

[
σ

(√
2

π
+ 2−

√
2

π

)
,+∞

)
.

Since lim
x→+∞

h′
1(x) = 0, h′

1(x) > 0 always holds in the

interval of (0,+∞). Due to h1(0) = 0, h1(x) > 0 always
holds in the interval of (0,+∞). Hence, (42) holds, and

then q(x) <
2

σ

√
2

π
+

x

σ2
holds.

iv. When x > 0, for the function h2(x) = σ2f(x)−xF (−x),
we have

h2(0) =
σ√
2π

> 0,

and

lim
x→+∞

h2(x) = lim
x→+∞

−F (−x)
1
x

= lim
x→+∞

f(x)

− 1
x2

= 0.

Additionally,

dh2(x)

dx
= −xf(x)− F (−x) + xf(x) = −F (−x) ≤ 0.

Therefore, when x > 0, σ2f(x) ≥ xF (−x) and

1− F (x) ≤ σ2f(x)

x
,

which is part of Mills’ Ratio inequality [44].
Hence, we obtain

f(x)

F (x) [1− F (x)]
≥ x

σ2
,when x > 0.

The proof is completed.

B. Proof of Lemma 3

Proof: Using p(x) ≤
√
2√
πσ

+
|x|
σ2

of Corollary 1, we

have

∥θ̃k − θ̃k−1∥

≤βM

k
p
(
sk(ϕ

⊤
k θ̂k−1 − C)

)
≤βM

k

( √
2√
πσ

+
|(ϕ⊤

k θ̃k−1 − C + ϕ⊤
k θ)|

σ2

)

≤βM

k

(
|ϕ⊤

k θ̃k−1|
σ2

+

√
2√
πσ

+
M∥θ∥+ |C|

σ2

)

≤βM |ϕ⊤
k θ̃k−1|

kσ2
+O

(
1

k

)
,
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and further

∥θ̃k − θ̃k−1∥2 ≤ 2β2M2|ϕ⊤
k θ̃k−1|2

k2σ4
+O

(
1

k2

)
.

The proof is completed.

C. Proof of Lemma 4

Proof: For the function h3(x) = F (x)−F (x+α), it is

easy to get
d

dx
h3(x) = f(x)− f(x+ α). Then, we have

d

dx
h3(x) < 0, x ∈ (−∞,−α

2
),

and
d

dx
h3(x) > 0, x ∈ (−α

2
,+∞).

When α > b, h3(x) strictly increases on the interval[
− b

2
,
b

2

]
⊆
(
−α

2
,+∞

)
, and

h3(x) ≤ F

(
b

2

)
−F

(
b

2
+ α

)
≤ −

(
F

(
3b

2

)
− F

(
b

2

))
.

Similarly, when α < −b, h3(x) strictly decreases on the

interval
[
− b

2
,
b

2

]
⊆
(
−∞,−α

2

)
, and

h3(x) ≥ F

(
b

2

)
− F

(
b

2
+ α

)
≥ F

(
b

2

)
− F

(
− b

2

)
.

Furthermore, when x ∈ (0,+∞), due to 3f(3x)−3f(x) <
0, which is the derivative of F (3x) − 2F (x) + F (−x), we
have F (3x)−2F (x)+F (−x) < 0 and

F

(
3b

2

)
− F

(
b

2

)
< F

(
b

2

)
− F

(
− b

2

)
.

Therefore, taking B = F

(
3b

2

)
−F

(
b

2

)
completes the

proof.
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